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Abstract 
Digital rock physics uses numerical simulations of various 
processes to obtain properties of the rocks under study. 
The entire process is costly and computationally intensive. 
This abstract proposes a deep learning approach to 
estimate the grain size and porosity distributions from 3D 
grayscale micro tomography images. The goal is to 
overcome the high human and computational cost of 
segmentation and estimation of the aforementioned 
properties. 3D convolutional neural networks are trained 
with an idealized pack of spheres and two cementation 
models. An experiment on the Berea sandstone is 
performed, showing promising results for the technology. 

Introduction 

The main goal of digital rock physics (DRP) is to image and 
digitalize the rocks under study and then, numerically 
simulate physical processes to obtain the rock properties, 
such as permeability and elastic moduli (Andra, et al. 
2013). Recently, the micro computed tomography (CT) 
analysis has gained interest because it can generate a 3D 
grayscale image representation of the rock, where the 
brightness is proportional to the CT-number of the material. 
The grayscale image is subjected to segmentation for 
labeling the pore and mineral phases presented at the 
image. The process of segmentation is semi-automatic, 
where algorithms are used to generate a segmentation 
which an experienced petrophysicist evaluates and tune 
the parameters to yield results that are as closest as 
possible to the reality (Sezgin and Sankur 2004, Iassonov, 
Gebrenegus and Tuller 2009). 

Porosity is one of the main properties used to characterize 
the rock under study. After the segmentation, one can 
easily compute the porosity by counting the pore labeled 
voxels and divide them by the total number of voxels. The 
grain size distribution (GSD) is another property which is 
used to characterize the hydrodynamic behavior of porous 
rocks (Rabbani and Ayatollahi 2015). The process of 
determining the grain size distribution involves analyzing 
the data via 3D segmentation algorithms that need to take 
into consideration the size and shape of grains, separating 
two or more cemented grains and determining their 
equivalent diameter.  

The two properties of interest mentioned are heavily 
affected by the segmentation performed. Furthermore, 
they depend on user experience and trial and error 
iterations of the workflows to perform quality control on the 
results. 

This work proposes a deep learning-based approach to 
overcome the segmentation and processing steps for 
determining the grain size and porosity distributions of the 
rock micro CT sample. Synthetic idealized rock models are 
generated to train a 3D convolutional neural network 
(CNN) (Ji, et al. 2013) with their respective grain size and 
porosity as the targets. The effectiveness of the method is 
tested on the Berea sandstone provided by (Andra, et al. 
2013), yielding promising results for the technology. The 
next section details the methodology, followed by the 
experiment and conclusions. 

Method 

The main idea behind the methodology is to use synthetic 
idealized rocks to train the convolutional neural network 
and later apply the inference phase to real micro CT 
samples. The most common idealized rock model in the 
literature is the pack of spheres (Andra, et al. 2013, Mindlin 
1949), which we can easily generate synthetic models and 
control the properties such as porosity and grain size. 
Furthermore, a sphere is a reasonable approximation of 
grains when working with grain size and porosity (Mavko, 
Mukerji and Dvorkin 2009). 

Synthetic data generation 

The training dataset was created using the sphere pack 
generation algorithm from (Baranau and Tallarek 2014) as 
a basis for the synthetic without cementation. A 
monodisperse pack of spheres is generated with 
approximately 10 thousand particles and radii equal to 50 
inside a pack of size 1000 x 1000 x 1000. This pack has a 
final porosity of 0.355 and, as the radii of all spheres are 
equal to 50, the grain size distribution is a delta function at 
50. Figure 1 shows a slice of the 3D pack of spheres. 

 
Figure 1: 2D slice of the 3D pack of spheres. 
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To this base image is attributed a voxel size in millimeters 
matching the voxel size of the micro CT sample, therefore, 
each sphere will have a fixed size in millimeters which will 
be used as the grain size. For example, if the voxel size is 
0.001mm then the grain size is 0.05mm. To cover a range 
of grain sizes, the 3D image is rescaled 𝑔 times while 

maintaining the voxel size in millimeters, typically 𝑔 = 5. 
This results in the same number of 3D images with 
respective varying grain sizes. Ideally, the minimum and 
maximum grain sizes encompass the range reported at the 
literature for the rock under study. 

At this step there are 𝑔 images with the same porosity of 
0.355. Therefore, to provide variability in porosity, we 
simulated different cementation levels based on the stiff 
and soft sand models (Mavko, Mukerji and Dvorkin 2009, 
Dvorkin, Gutierrez and Grana 2014). The soft-sand model 
considers cementation away from the grain contacts, 
whereas the stiff-sand model adds cementation at grain 

contacts. Hence, 𝑝 levels of porosity are chosen covering 
a wide range from typically 0.05 to the porosity of the 
original pack of spheres. 

Using each level of porosity for each scaled image, the 
soft-sand model is simulated by randomly flipping the 
necessary number of pore voxels, away at least 1 voxel 
from the grains, to reach the porosity level. Similarly, the 
stiff-sand model is simulated by using Truncated Gaussian 
Simulation (Armstrong, et al. 2003) with an unconstrained 
geostatistical simulation method such as FFT-MA (Le 
Ravalec, Noetinger and Y. Hu 2000) or SGS (Deutsch and 
Journel 1998). We use a spherical variogram of range 
equal to half of the grain size and variance equal to one. 
The simulation is binarized using the following threshold 𝑙:  

𝑙 = 𝐶−1(1 − Φ𝑖/Φ𝑝), 

where 𝐶−1 is the inverse normal cumulative function, Φ𝑖 is 

the desired porosity level and Φ𝑝 is the porosity of the 

sphere pack. Figure 2 shows examples of 2D slices from 
the 3D images for 3 levels of porosity and grain sizes. 

 
Figure 2: Slices from 3D examples of the two types of 
cementation, levels of porosity and grain sizes.  

Up to this stage, there are 2𝑝𝑔 binary images, the next step 
is to simulate the CT imaging. Hence, the real CT image is 
used to calculate a filter that should map the binary images 
to the grayscale CT. We propose approximating the 
imaging process by a linear system, therefore the first step 
in calculating the filter is to apply a simple threshold 
segmentation to the real CT image and define the mean 
value for the pore and grain phases of the rock. Figure 3 
shows the histogram with the values indicated. 

 
Figure 3: Histogram of the CT image with the two 
main phases and segmentation threshold indicated. 

With the real CT image and the segmented one, we apply 
the grain phase value to the voxels with value 1 and the 
pore phase value to the voxels with 0 at the segmented 
image. Thus, the filter is calculated by creating a linear 
system of equations 𝐴𝑥 = 𝑏, where 𝑥 is the filter with a size 

of typically 50 to 80 coefficients, 𝑏 is a single 1D vector 

extracted from the original CT image and 𝐴 is the 
convolutional matrix with constructed with the same 1D 
vector position of 𝑏 from the segmented image with the 
grain-pore phase values. Solving the linear system gives 

us the 𝑥 filter that maps, using convolution, the grain-pore 
phases mean value segmented images to the original CT 
image frequency content. 

Subsequently, we use the 3D synthetic images, generated 
at the previous steps, to map the 1-valued voxels to the 
grain phase mean value from the original CT image and 
the 0-valued voxels to the pore phase mean value. Next, a 
white noise is applied after the mapping to simulate the 
noise present at the CT image. The 𝑥 filter is then applied 
to the modified images generating a set of approximated 
synthetic grayscale CT images. 

At the end of the synthetic image generation, there will by 
2𝑝𝑔 synthetic binary segmented images that have each 

one a grain size and porosity label, along with 2𝑝𝑔 
respective synthetic approximations of real CT images in 
grayscale. The step-by-step of the synthetic generation is 
summarized below: 

1. Generate a random sphere pack of monodisperse 
spheres. 

2. Assign the voxel size for the sphere pack equal to the 
voxel size of the intended CT image to analyze. 

3. Rescale the sphere pack for covering the grain sizes 
according to the range reported in the literature. 

4. Add soft cementation by randomly flipping 0-valued 
voxels to reach the porosity levels stipulated 

5. Add stiff cementation using a geostatistical 
simulation 

6. Segment the original CT image using a simple 
threshold and determine the mean values for the 
pore and grain phases. 

7. Calculate the CT filter 𝑥 
8. Map the generated binary synthetic images to the 

mean values of pore and grain phases and add white 
noise. 

9. Filter the mapped images with the CT filter 𝑥 
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With the synthetic 3D binary and grayscale image pairs 
ready, the next step is to sample a small 3D window to use 

it as input to the convolutional neural network. A number 𝑠 
of samples per case is chosen, typically 400 to 500. The 
total number of training samples is going to be 2𝑝𝑔𝑠, where 
the grayscale image input samples are subsampled with a 

3D window of size 𝑤, typically smaller than 128. 

The subsampling will result in a smaller 3D window that 
have 2 labels, the grain size, that depends only on the 
original synthetic image and the porosity, which changes 
locally for each window. Hence, the porosity label is 
recalculated using the binary respective subsample. 

Finally, the training dataset consists of 2𝑝𝑔𝑠 3D grayscale 

synthetic CT samples of 𝑤3 voxels each and 2 labels as 
outputs (targets): the local window porosity and the grain 
size. 

Convolutional Neural Network 

The network used for learning the grain size and porosity 
distributions was the convolutional neural network due to it 
capabilities for spatial patterns recognition and 
identification, spatial features learning and nonlinear 
regression fitting (Ji, et al. 2013). Table 1 shows the 
summary of the network used, its size and the total number 
of parameters. All layers have ‘relu’ activations except for 
the last one that uses ‘tanh’. 

Table 1: Summary of the CNN. 
# Type Stride Neurons Parameters 

1 Convolutional 3D No 16 448 

2 Convolutional 3D 2x2x2 32 13,856 

3 Dropout - 0 0 

4 Convolutional 3D No 32 27,680 

5 Convolutional 3D 2x2x2 64 55,360 

6 Dropout - 0 0 

7 Convolutional 3D No 64 110,656 

8 Convolutional 3D 2x2x2 64 110,656 

9 Dropout - 0 0 

10 Convolutional 3D No 128 221,312 

11 Convolutional 3D No 256 884,992 

12 Convolutional 3D No 2 514 

Total: 656 1,425,474 

Popular layers for deep neural networks include pooling 
layers (Ji, et al. 2013), which decreases the size of the 
network by pooling the maximum activation of the previous 
layer, gaining in invariance to certain transformations of the 
input but compromising on precision. These types of layers 
were not used in our model due to the need of precise 
information about the grain and cementation shapes to 
perform the task of predicting porosity and grain size, 
which is a type of regression. Another popular layer often 
employed is the dropout, which is included in our model to 
prevent overfitting. This layer randomly drops to zero a 
percentage of the activations of the previous layer, in this 
case 20%.  

The input layer is sized according to 𝑤, therefore we’ve 

chosen to use 𝑤 = 64. This can be changed as needed 
depending on the case. A recommendation is to choose a 
window size that fits at least a few average-sized grains, 
so that the CNN can properly infer the outputs not only by 
the grayscale values itself, but by using also the shape of 
the grains and pores. 

Experiment 

Dataset 

The methodology was tested using the Berea sandstone 
micro CT by (Andra, et al. 2013). The 3D image has a total 

of 10243pixels with a voxel edge length of 0.74 𝜇𝑚. As the 

image has extraordinary resolution, it was rescaled to 5123 
and converted to grayscale [0,255] for this experiment, 
thus, saving memory and not compromising the ability to 
identify clearly the grains and pores in the image. This 
rescaled and normalized image will be referred form now 
on as original CT image. Figure 4 shows a 2D slice of the 
rescaled image. 

 
Figure 4: Slice of the Berea sandstone sample with 

a voxel edge of 1.48 𝜇𝑚. 

From visual inspection, it was determined that the grains 
have a maximum cross section range of 0.03𝑚𝑚 to 

0.12𝑚𝑚. This range is not the real 3D grain size range 
distribution, but is a broad range that should cover the real 
one. Therefore, the synthetic data generation starts with 
rescaling the pack of spheres to match the grain size 
range, in this case, the rescale factors were set to 
(0.4, 0.7, 1, 1.3, 1.6). Hence, resulting in a 𝑔 = 5 and grain 

sizes of (0.0296, 0.0518, 0.0740, 0.0962, 0.1184) in 𝑚𝑚. 

Literature on the Berea sandstone states that the porosity 
ranges from 19% to 26% (Churcher, et al. 1991), in fact, 
the sample under study has a porosity of 20% (Andra, et 
al. 2013). Therefore, the porosity levels for the synthetic 

data is set to (0.005, 0.086, 0.167, 0.248, 0.330), yielding 
𝑝 = 5 and 2𝑝𝑔 = 50 3D binary training images.  

At this stage, the computation of the CT filter is performed. 
The first step is to select the grain and pore phases mean 
values using the histogram. Figure 3 shows the histogram 
of the Berea sandstone. The grain phase value was set to 
135, the pore to 108 and the segmentation threshold to 
115. A new segmented image is generated by applying the 
segmentation threshold to the original CT image, setting to 
108 all the voxels with values below 115 and to 135 all 
voxels with values above 115. 

Next, we select a single 1D vector position to estimate the 
filter using a linear system. The convolution matrix 𝐴 is 
constructed with the 1D vector from the segmented two-
phase valued image and  𝑏 is equal to the 1D vector from 
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the original image. Solving the system yields the filter 𝑥, 
which is shown in Figure 5. 

 
Figure 5: Filter calculated for mapping the segmented 

images to the CT frequency spectrum. 

A new set of 50 images is created by mapping the 0-valued 
voxels of the binary synthetic images to 108 and the 1-
valued voxels to 135. At last, the images are convolved 
with the computed filter, producing the final set of 50 
grayscale images. 

To generate the final training dataset an 𝑠 = 400 is chosen. 
For each 50 binary 0/1 synthetic images and their 

grayscale filtered counterparts, 𝑠 smaller 3D windows of 
size 𝑤 = 64 are randomly sampled from the two images at 
the same time. The grayscale windowed image is added to 
the input training set and labeled with: the respective grain 
size from the image that originated it; and the porosity label 
calculated from the binary 0/1 windowed synthetic. 

Finally, the training dataset has inputs with 20,000 images 

of 64 × 64 × 64 voxels and outputs (targets) with 20,000 
two dimensional labels, containing grain size and local 
window porosity.  

Training and Results 

The convolutional neural network presented at the 
methodology section was trained with the “adam” optimizer 
and 1,000 epochs (iterations over the training batch). As 
the training data is entirely synthetic, there is no point in 
separating the data into training, test and validation, 
because any random split will result in testing and 
validation sets with very similar samples as the training. 
Normalization was performed to maintain the inputs and 
outputs inside the range [−0.9, 0.9]. The network 
converged to a low error, showed at Figure 6. 

 
Figure 6: Training loss in log scale over the epochs. 

Keras framework was used with TensorFlow backend, 
along with a GTX1080Ti GPU, where the training 
consumed 660𝑠. The convergence of training is 
evidentiated by the similarity of histograms of grain size 
and porosity between the training targets set and the 

results when the training inputs are fed to the network. 
Figure 7 shows the comparison aforementioned. 

 
(a)                                            (b) 

Figure 7: Training targets (red) compared to the results of 
the CNN when applying the input training data (blue) for 

(a) porosity and (b) grain size. 

The inference phase was performed by sampling the 

original Berea sandstone 5123 CT grayscale image 5,000 

times using the 643 window. Therefore, the result will be 
porosity and grain size distributions estimation, due to the 
variability of those properties inside the same CT sample.  

 
Figure 8: Grain size distribution result from the CNN 
applied to the Berea sandstone (orange) and training 

targets (blue). 

Figure 8 shows the granulometry distribution results from 
the CNN compared to the training data. The average grain 

size was 0.064mm and the standard deviation 0.015𝑚𝑚. It 
is possible to notice that, even though the grain sizes 
provided to the network as training inputs are a set of fixed 
sizes, the CNN was able to interpolate and combine 
different activation levels, approximating what is reported 
at the literature (Churcher, et al. 1991) and compatible with 
visual inspection. 

Figure 9 compares the results of the CNN for porosity with 
the porosity extracted from a segmentation available with 
the original dataset (Andra, et al. 2013). The match 
between the CNN results and the reference segmentation 
is evident. 
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Figure 9: Porosity result of the CNN in blue compared to 

the reference segmentation in red. 

Discussion 

The methodology proposed harness the idea of using 
synthetic data to train a deep neural network, aiming to 
apply it to real data. The goal was to balance the 
compromise between mimicking the real rock 
characteristics by using idealized rock models and 
maintaining a complexity level that still allows for analytical 
simple metrics to be extracted from the training dataset. In 
other words, to get as close as possible to reality with 
synthetic controlled data. 

The method achieved an excellent result for porosity, 
proven by the comparison with a porosity distribution 
extracted from a reference segmentation. Also, the 
granulometry distribution is in line with the reports from the 
literature, although a more comprehensive comparison is 
needed, perhaps using an algorithmic method for 
estimating 3D grain size distributions, as in (VAN Dalen 
and Koster 2012). 

One caveat of the methodology is the estimation of the CT 
filter to map the synthetic segmented images to the real CT 
frequency spectrum, as there is the need to segment the 
real CT image. Although, the segmentation can be a simple 
one, without much rigor, due to the robustness of the 
CNNs. Even with a poor map from the segmented synthetic 
to the real CT, the network is expected to perform in a 
similar manner. Adding noise also helps by increasing in 
the robustness of the CNN. An alternative to estimating the 
filter by segmentation is to estimate the frequency content 
of the real CT image and use a simple bandpass filter at 
the synthetic segmented. The filter used was 1D, another 
improvement would be to calculate a 3D filter assuming 
isotropy. 

Conclusion 

Considering the CNNs capacity for spatial patterns 
identification, the application of deep learning to micro CT 
samples is promising. The results are promising for 
porosity and grain size distributions estimations. Future 
work should investigate the use of rock physics models to 
include petrophysical properties at the estimation, such as 
bulk modulus. Additionally, a more general training is also 

needed to improve the applicability of a trained network to 
different types of rocks, including carbonates. 
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